Evan Kahn

Integration of Camera Systems and Investigation of Optic Flow
Evan Kahn
Dr. Adrienne J. Raglin and Dr. David A. Ligon
Army Research Lab

Evan Kahn

Abstract

The original aims of this study were to allow a Defend-IR DI-5000
infrared/visible/laser rangefinder assembly to interface with a computer through a
portable, user-friendly Java application with flexible input methods, and to allow the
user to capture from, as well as control, the camera. Since the DI-5000 assembly at
hand lacked the integrated Joystick Control Unit, an alternate piece of software was
commissioned, which allowed a user to control the DI-5000 with the hexadecimal
codes sent via serial port commands documented in the camera’s specifications.
Longer-term goals involve the creation of software in MATLAB to calculate and
adjust for the motion of the camera. This allows moving objects in the frame to be
analyzed from a simulated, motionless viewpoint. With an artificially motionless
point of view, we can then calculate the image flow of objects moving in the frame.
Using the DI-5000’s built-in laser rangefinder, we can also calculate the distance

from those objects as well as their speed.

Evan Kahn

Introduction / Background

The long-term aims of this study included facilitating the detection and
tracking of moving objects through the use of automated tracking software that
receives information from multiple articulated cameras equipped with laser
rangefinders. Eventually, optic flow principles would be used to calculate the
location of, and distance to, moving objects. This is useful for future automated
systems designed to detect and track down moving objects. The technology required
to allow a camera system to intelligently follow a moving object as well as
compensate for its own motion is rooted in the principles of optic flow, first
described in the 1940s. Optic flow is a field of study that describes how motion is
perceived in the two-dimensional ‘image plane’: to a single human eye as well as to a
camera.

However, time constraints meant that the complete goal of this project was
never achieved. Instead, optical flow processing software developed by Visesh Chari
and uploaded to MATLAB MathWorks was used to analyze the images output from

the software.

Evan Kahn

Materials and Methods

A Defend-IR DI-5000 camera, sourced from the Army Research Lab, was used
for the object tracking. Java software enabled the user to perform a number of vital
functions, including panning, focusing, and tilting the camera, switching between the
camera’s visible and infrared sensors, and operating the camera’s laser rangefinder.
The camera is connected to the computer via a VPort Ethernet interface, and the

camera is controlled through the computer’s serial port.

|£ | Camera Control = ﬂ
IR Focus CCD Zoom
Speed (in mrad/s) IRisible Mix
@32 O64 0128 01016 @o% O50% O65% O80% O 100%
Non-Uniformity Correction
Laser Rangefinder @ Nearest -
) eset position
[sewe] s [0 O sramest
[| S Toggle Pause

O Farthest
Toggle Narrow IR FOV

Time between captures (ms) Toggle HotiCold
oggle Hot

Toggle Auto Gain

Capture

Pan: Tilt: Write to port:

Fig. 1: The Defend-IR DI-5000 camera.

Fig. 2: The software created to control the camera.

Serial Communication

The bulk of this project consisted of writing Java-based GUI software to
control and capture images from the DI-5000 camera. Various hexadecimal codes
were pulled from the documentation that came with the camera, and the RXTX
extension for Java was implemented to allow the camera to communicate with the
computer.

The camera involved had a number of mechanical adjustments that needed

to be controlled via software. Typically a standalone joystick unit would be

Evan Kahn

connected to the camera via its serial connection in order to control its rotation, tilt,
zoom, and focus. In the absence of such a joystick, a program was created to
interface with the camera.

In order for the camera to understand the commands sent by the user, the
program needed to generate specific hexadecimal values to be sent via the serial
port. For example, in order to rotate the camera 30 degrees clockwise, the number
30, after being input by the user, was first converted from degrees to milliradians
and then converted to a hexadecimal value. Additional steps were taken to ensure
that the number input was appropriate for conversion - for instance, the camera’s
serial interface accepts different formats depending on whether the input value is
positive or negative. Additional controls (corresponding to hexadecimal values
hardcoded in the serial interface) included various image adjustments such as non-
uniformity correction (the camera takes a series of images to automatically calibrate
its brightness settings). Also built into the software was a panel to allow the
operation of the laser rangefinder - which will prove useful in future applications

(see Conclusions section).

Evan Kahn

Image Capture

Initially, images were captured through a digital video recording device that
made use of the camera’s analog video out port. However, this only supplied a
constant video stream and provided no way to capture individual images. As an
alternative the VPort 2310 Ethernet device was used. This device allowed still image
capture over a LAN between the Ethernet-connected VPort and the computer. The
Java Authenticator class was used to allow the user to access the VPort software
over the network.

Image capture, which was consistently successful following the installation of
the VPort module, allowed images to be taken on command or over a brief time
interval. The initial intent was to create an original piece of optic flow software, but
a number of issues stemming from the low resolution of the images and the
difficulty of automating the comparison between images, led us to use an
established optic flow calculation solution.

Software by Visesh Chari of the International Institute of Information
Technology, Hyderabad, sourced from the Matlab MathWorks database, was used to
facilitate optic flow calculations. The software package, entitled “High Accuracy
Optic Flow”, included two software algorithms designed to calculate flow: the Brox
algorithm, originally detailed by Thomas Brox in 2004, and the Sand algorithm,
originally detailed by Peter Sand. We chose to use the Brox algorithm, which
provides good reliability and is highly configurable.

A number of images were captured with the camera array, indoors and

outdoors, focusing on both stationary objects and environmental features, and

Evan Kahn

moving objects. The images on which we began analysis were taken from a set
including a moving truck and the stationary background against which that truck
was moving. In order to establish some degree of mobility, the camera, the PC used
to control it, and the PC’s peripherals were set up on a rolling cart and plugged into
a UPS (uninterrupted power supply, with an integrated battery) in order to permit
untethered operation. The two CRT monitors depicted allowed the user to view a
live analog preview directly from the camera output, unhindered by the VPort unit’s
digital encoding process. In order to maximize longevity, the computer used was a

low-powered PC with solid-state memory, running Windows XP.

Fig. 3: The camera setup used in the field.

Evan Kahn

Results and Conclusions

Simply put, optic flow principles serve to determine the continuity of

the edges and corners detected

features in a series of images that represent motion

in one image cross over to the next, albeit in different locations. The assumption that

the overall “flow” of the image remains constant - that is, that everything moving

from one image to the next does so in a uniform and predictable manner - can be

expressed in a graph of all optic flow that occurs in the image. Since the graph in

question comes from the two images shown - including a moving truck and a

moving camera - the outline of the truck is seen in the flow as well as the more

uniform arrows indicative of the moving point of reference.

o

Fig. 4: Four frames of an image capture including both a moving object and a moving point of

reference.

L L L L L L A I
L L o i i e
e e o e e
e o ey A e e
L L I S L A e e
L L I A S L A, e
L e o
S e

S e

Sl A L
ST I LA LI
S LI
A I e
et b st bt T, L
b bt bt 7K, L
LI e e
LI L, e
oy e
LI L e
L LD e, T
LI I LD SR
A OO S Y i
T OO S Y A
T S O S Y i
e e TSP e
e
e A

L L L L L e e e
L L L L e e e
L L L L L L T T e e e eirar e
B S S o

Fig. 5: An enlarged portion of the optic flow diagram yielded via the Brox algorithm, applied to the

first two ‘truck’ images shown above.

Evan Kahn

The final camera control software consisted of a GUI-based control system
including four directional controls allowing the user to pan the camera clockwise
and counterclockwise, as well as tilt up and down. It was also possible for the user
to set the camera to pan and tilt to a specific degree measurement on each axis. The
laser rangefinder could be triggered and set to take a different number of
measurements at a time, and data can be sent and received simultaneously through
the serial port (although the DI-5000 did not support this feature). Images could be
captured individually or at an interval of a user-specified number of milliseconds.
The infrared lens could be manually focused, and the visible lens can be zoomed in
and out. If the user required a superimposition of the visible and IR camera output,
it was possible to set the ‘visible-IR mix’ to any point between 100% visible and
100% infrared, in increments of 25%.

While the creation of the camera control software (detailed in more depth in
the Materials and Methods section) was successful, due to time constraints the
fullest exploration of the optic flow processing software proved inconclusive. Its
ability to trace major features between images seemed to work properly, but its
extreme lack of speed (comparing two frames often took over 20 minutes) made it
difficult to evaluate. Further research warrants exploration of the practical
applications of these algorithms, including the tracking of moving objects and the
automated slaving of a group of cameras to said object using basic geometry in
tandem with the optic flow algorithms. For instance, using the laser rangefinder
present on the DI-5000, combined with optic flow principles and geometry, could

enable the user to determine the exact size, as well as speed, of a distant object. This

Evan Kahn

could prove invaluable for defense applications as well as in civilian and consumer

fields.

|£| Camera Control =R
Tatt IR Focus CCD Zoom
| <Pan | Tiw [pans [« l=] [ow][m]
Speed (in mrad/s) IRWisible Mix
| ®32 O64 128 01016 @®0% (O50% O65% (80% O 100%

| Non-Uniformity Correction

Laser Rangefinder
@ Nearest rr—r——
I Single H Multi H Stop |DBrightest
Toggle Pause
) Farthest

Toggle Narrow IR FOV
Toggle Hot/Cold
Toggle Auto Gain

Time between captures (ms)

Capture

pan:| [Tt | Write to port:

Fig. 6: The final version of the software used to control the camera apparatus.

10

Evan Kahn

References
DefendIR integrated thermal/ccd/ptz camera. (n.d.).

Retrieved from http://gs.flir.com/uploads/file /products/brochures/defendir.pdf

Brox, T., Bruhn, A, Papenberg, N., & Weickert,]. (2004). High accuracy optic flow
estimation based on a theory for warping. Manuscript submitted for publication,
Mathematical Image Analysis Department, Saarland University, Saarbruticken,

Germany. Retrieved from http://Imb.informatik.uni-

freiburg.de/Publications/2004 /Bro04a/brox_eccv04 of.pdf

Owens, R. (1997, Oct 29). Optical flow. Retrieved from

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT12/nod

e4.html

Chari, V. (2007). Optical flow computation. Informally published manuscript,

Retrieved from

http://perception.inrialpes.fr/~chari/myweb/Software/flow_documentation.pdf

11

